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Abstract

Mapping methods are developed to improve the accuracy and efficiency of
probabilistic structural analyses with coarse finite element meshes. The mapping
methods consist of : (1) deterministic structural analyses with fine (convergent) finite
element meshes, (2) probabilistic structural analyses with coarse finite element
meshes, (3) the relationship between the probabilistic structural responses from the
coarse and fine finite element meshes, and (4) a probabilistic mapping. The results
show that the scatter in the probabilistic structural responses and structural reliabil-
ity can be efficiently predicted using a coarse finite element model and prober map-
ping methods with good accuracy. Therefore, large structures can be efficiently

analyzed probabilistically using finite element methods.



Introduction

It has been recognized in the structures community that uncertainties in the
structural parameters as well as in the service iénvironment need to be consideredv in
the evaluation of structural integrity/reliability. Probabilistic structural analyses are
formal methods to include those uncertainties. However, these methods are inher-
ently computationally intensive due to the large numﬁer of deterministic analyses
required to accurately simulate the effect of the uncertainties on the desired struc-
tural response (stress, displacement, frequency, etc.) necessary for structural reli-
ability assessment. Moreover, modern structures are often analyzed by finite element
methods. Probabilistic structural analyses using finite element models can be eco-
nomically performed if relatively coarse meshes are used. Finite element analyses
using coarse meshes not only raise questions regarding the convergence on the
deterministic structural responses (using mean structural parameters and mean
loads) but also significantly alter the true probability distributions of the structural
responses. It is important, therefore, to evaluate the influence of mesh coarseness
on the accuracy of the probabilistic structural responses and the structural reliability.
Recently, several alternatives to overcome the problems were examined at NASA
Lewis Research Center. A methodology is developed to perform a probabilistic
mapping on the results from a probabilistic structural analysis with a coarse finite
element mesh. In this paper, these alternatives are presented. The th_eoretical
background and the 7computational procedure are also described. Four numerical

examples were analyzed to demonstrate the effectiveness and accuracy of this meth-

odology.



Theoretical Background

The accuracy of the probabilistic structural responses is most affected by two
factors. The first one is the statistical accuraC); of the probability distributions of the
random variables involved in the analysis. The second one is the coarseness of the
finite element models. The random variables are independent of the coarseness of
the finite element model and are assumed to be accurately described. Therefore, the
error of the probabilistic structural response for a given finite element mesh is di-
rectly caused by the coarseness of the model. In order to derive the mapping meth-
ods, a coarse finite element mesh must be chosen in such a way that this model
reflects proper structural behavior with a tolerable error, for example, 10 to 20 %
of error. Since the structural responses from coarse and fine f';nite element meshes
are simulated through the same structural mechanics and are influenced by the same
random variables, high correlation between them is expected and a fully correlated
condition is assumed in the following derivation. Therefore, the linear relationship
between the structural responses from fine and coarse finite element meshes is re-

presented by Eq.(1).

X, =AX, + B ’ (1)

where .\, and X. are the probabilistic structural responses from fine and coarse
meshes respectively. The constants A and B are determined by using the probabi-
listic potential energy variational principle developed by Liu, Mani and Belytschko

' and different orders of correction. The potential energy variation principle states
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that the mean and the standard deviation of the probabilistic structural response for

a given finite element mesh are

N
EX =X~ ) (X0} )

=1

and

N ,
> (X al (3)

where ¢, is the standard deviation of the £ independent random variable; N is the
number of independent random variables; X is the probabilistic structural response
for a given finite element mesh; X© represents the deterministic structural response

which is computed using mean values of the associated primitive random variables;

X’ and X,” are defined in equations (4) and (5).

X, =dX|el} | (5)

where U} is k* independent random variable.

In the following, three relationships between structural responses from coarse and

fine finite element models are derived based on different assumptions.



(1) Shift Mapping

Shift mapping is a first moment correction method. Let

Yf= Xy — E(Xf) (6)
and

Y.=X,— E(X,) (7)

where X; and X, denote the probabilistic structural responses simulated using fine

and coarse finite element meshes respectively. First order correction can be achieved

by letting

Y,=7, (8)

Substituting Egs.(2) and (3) into Eq.(8), we obtain

N
X=X~ X2+ X} + D (X o

k=1
N
v 2
- Z (X" o
k=1

(9)



The last two terms in Eq.(9) are related to the second derivatives of structural re-
sponses to each independent random variable. "If linear relationships between the
structural responses and the independent random variables exist, the second deriva-

tives become zero. Therefore, Eq.(9) can be simplified as

Xe=X,— X; + X/ (10)

This means that the probability distributions of structural responses simulated using
a fine finite element mesh can be obtained by a simple shift on the abscissa of the
probability distributions of structural responses simulated using a coarse finite ele-
ment mesh. The shift amount is the difference between the deterministic values from
coarse and fine finite element meshes. However, if a linear relationship does not ex-
ist, Eq.(10) is only an approximation. This approximation will be reasonable only if
the coarse model causes a small error, say less than 10 %, or the relation between
structural response and random variables is approximately linear. From this analy-

sis, the constants 4 and B in Eq.(1) are shown in Eq.(11).

(11)

(2) Ratio Mapping

Ratio mapping is a second moment correction method. Letting

6



f U.Yf (12)
and
X.— E(X
Zc=_fTX(_.£)_ (13)

and setting the normalized structural responses Z, and Z; from coarse and fine finite

element meshes to be equal, we obtain

X, — E(X, —
f—EX) X - E(X) (14)
UXf G‘Xc

Substituting Eqs.(2) and (3) into Eq.(14), the relationship between the structural re-

sponses from coarse and fine finite element meshes can be developed as follows. Let

(15)

and

- (16)




Substitute eqs.(15) and (16) into eq.(14), we obtain

/Yf = erC bt rz(X; - Z(Xc)kﬂak)
- S0,

(17)

For a given coarse mode! which reflects proper structural behavior, the ratio r, is
dominated by several key or sensitive random variables. This ratio can be considered
as a weighted average of the individual ratio of the first or second derivative of the
structural responses from fine and coarse models. Let the structural responses from

fine and coarse models be represented by Eqs.(18) and (19).

N N
Y2
X=X+ alU+ ) bl (18)
i=1 j=1
and
y N
X.= X4 Y qU+ ) U (19)
i=1 j=1

where a, b, ¢, and d, are constants determined numerically. We assume



(7]
sz al.

1Y CO N Ci

bj ;
>~ — l,j - l,N (20)
4

Since, fine and coarse structural models are subjected to the same loads and same
random variables with similar structural behavior. Also, in the limit, the ratios in
equation (20) is equal to 1 when the coarse model approach to the fine model. Sub-

stituting Eq.(20) into Eq.(16), it is found that

(21)

Equation (21) will be verified later by the numerical examples. Substiiuting Eq.(21)

into Eq.(17), we obtain

o
a2l x 22)
af = 0 c
. (s
Therefore, the constant A and B in Eq.(1) are
0
Xy
4= —
X, (23)
B =20



The ratio mapping method represents the fact that not only the mean values are

different but also the scatter around the mean can be either wider or narrower.

Therefore, the normalized structural responses from both models are considered to

be equal in this method.

(3) Mixed Mapping

For a very coarse finite element mesh on which neither shift mapping nor ratio

mapping works, a mixed mapping method is proposed. Mixed mapping can be

considered as an average value of the structural responses predicted by shift and ra-

tio mapping methods. The relationship between the structural responses from fine

and coarse finite element meshes are represented by Eq.(24)

Computational Procedure

(1) Probability Distribution

(24)

The probability distributions of the converged structural responses are simulated

by the following steps.

ep | : compute the convergent deterministic structural response using fine mesh

model.
10



Step 2 : simulate the probability distribution of the structural response using a coarse

finite element mesh.

Step 3 : determine the probabilistic relationship between the coarse and fine finite

element responses.

Step 4 : compute the convergent probability distribution of the structural response

with the results obtained from steps (1) to (3) by a probability mapping.
(2) Probability of Damage Initiation

Crack initiation occurs when the stress is greater than the strength of the mate-
rial. The probability distribution of the strength is simulated using the multifactor
interaction equations as described by Bovce and Chamis 2 The probabilistic stress
of a given finite element mesh is simulated by Shiao and Chamis 3 The convergent
stress is then simulated according to the computational procedure described previ-

ously. The probability of damage initiation is computed by the following equation.

P; = P(stress > strength)

| s ax

—0o0
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where F; is the cumulative distribution function of the strength; £ is the probability

density function of the stress.
Numerical Examples and Discussion

Four examples are studied to ver.ify this methodology. The computer code
NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) ¢ is used to
perform the probabilistic structural analyses. Maximum effective stress and the first
buckling load from coarse and fine meshes using different mapping methods are

simulated in the following examples.

In the first example, a cantilever plate subjected to lateral pressure is analyzed as
shown in Fig.(1). Plate thickness and the uniform pressure are considered to be ran-
dom variables. Although the coarse finite clement mesh underestimates the stress
by 25 %,-the prediction of the cumulative distribution function of the stress using
ratio mapping with a coarse finite element mesh compares very well with the result
from the fine finite element mesh as shown in Fig.(2). In this example, the ratio r,

and r, in Egs.(15) and (16) are equal as derived in Eq.(21). Their values are

rl = r2= 1.326

It is found that the shift mapping method provides good mean values but not the
scatter. The probability of damage initiation is shown in Fig.(3). This study indi-

cates the accuracy predicted in the tail region of the probability distributions of the

12



structural responses. Again, the prediction from ratio mapping gives an excellent

result.

In the second example, a buckling analysis of a simply supported composite plate
is performed. The plate geometry and the loading conditions are shown in Fig.(4).
The random variables considered are the coefficients of the stiffness matrix for the
force resultant-generalized strains relations from laminate theory. The probabilistic
distributions of those coefficients are computed by the NASA Lewis in-house com-
puter code PICAN (Probabilistic Integrated Composite Analyzer). In this example,
the buckling load is overestimated by 11 %. However, the buckling load is predicted
well by ratio mapping as shown in Fig.(5). r, and r; are found to be equal again.

Their values are

rl = rz =089

In the third example, a cantilever plate subjected to thermal/mechanical loads as
shown in Fig.(6) is analyzed. Three random fields (uncertaintics) are considered.
They are thickness, modulus and temperature. Each field consists of correlated nodal
random variables. The loads at the free end are also considered to be random. The
structural parameters, such as modulus and strength, deteriorate under aggressive
service environments. In this example, even with a poor mesh (16% error in the
deterministic response), the probabilistic distribution of the structural response using
a coarse finite element mesh adjusted by the ratio mapping method compare very
well with those using fine finite element mesh as shown in Fig.(7). The probability

13



of damage initiation is also predicted well by the same method as shown in Fig.(3).
In addition, the ratio of the computational time using coarse and fine meshes is
about 1:20 as shown in Table (1). Therefore, tremendous computational time is

saved with this methodology.

In the final example, a tapered cantilever plate with variable thickness is studied.
The geometry and the loading conditions are shown in Fig.(9). The uncertainties
considered are the same as those in the previous example. The cumulative distrib-
ution function of the effective stress in Fig.(10) and the probability of damage initi-

ation in Fig.(11) are predicted very well by ratio mapping.
Concluding Remarks

In conclusion, the mapping methods are developed to perform probabilistic
structural analyses with coarse finite element meshes. It is found that (1) the shift
mapping works well only with a very good coarse mesh (i.e. error is less than 5%);
(2) ratio mapping accurately predicts the probability distribution and the structural
reliability even using a very coarse mesh; and, (3) results from mixed mapping always
lie between those from shift and ratio mapping. Using this methodology, good ac-
curacy can be achieved and computational time will be minimized. Therefore, the
dilemma experienced using either coarse or fine meshes for the probabilistic struc-

tural analyses, especially for large structures, is resolved.
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Fig. 1. Geometry and Loading Condition of a Square Cantilever Plate
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Fig. 2. Comparison Between the Cumulative Distribution Functions
of the Effective Stress from Different Mapping Methods (Example 1)
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Fig. 5. Comparison Between the Cumulative Distribution Functions
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Fig. 6. The Geometry and Loading Conditions of a Cantilever plate
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Fig. 7. Comparison Between the Cumulative Distribution Functions
of the Effective Stress from Different Mapping Methods (Example 3)
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(Example 4)
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Fig. 10. Comparison Between the Cumulative Distribution Functions
of the Effective Stress from Different Mapping Methods (Example 4)

20



//———_
1074 ="
prOBABILTY 1076 ——1 1 L1 FINE MESH
OF DAMAGE -2
INTIATION  107° — —
1076 [ I B
4 5 6 7 4 5 6 7 COARSE MESH
LOG FATIGUE CYCLES
— — — PINEMESH O———© COARBE MEBH WITHOUT MAPPING O———8  COARSE MEBH WITH RATIO MAPPING
O——A  COARSE MESH WITH MDEED MAPPING  O———©€  COARSE MESH WITH BHIFT MAPPING

Fig. 11. Comparison Between the Probability of Damage Initiation
from Different Mapping Methods (Example 4)

Number of | Deterministic Error, CPU time,
Nodes stress percent sec
16 (4 by 4) | 75.4 16 0.9
25 (5 by 5) | 81.0 9 1.2
| 36(6byé) | 83.9 6 1.7
. 49(7by7) | 85.6 4 2.2
64 (8 by 8) | 86.7 3 2.9
81 (9 by 9) | 87.5 2 3.5
100 (10by 10) 88.1 1.5 45
361 (19by 19) 894 | o 19.1

Table 1. Comparison of the Error and CPU Time of the Deterministic Stress
Using Different Finite Element Meshes (Example 3)
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